Let (a_n) be a bounded sequence of real numbers. Let us remind the notations

 $R_n := \{a_k : k \ge n\}, \quad s_n := \sup R_n, \quad m_n := \inf R_n.$

Let us also recall the following definition:

Definition. Limit superior of (a_n) is defined as

$$\limsup_{n \to \infty} a_n := \lim_{n \to \infty} s_n = \inf s_n.$$

Limit inferior of (a_n) is defined as

$$\liminf_{n \to \infty} a_n := \lim_{n \to \infty} m_n = \sup m_n.$$

Theorem. Let (a_n) be a bounded sequence of real numbers. Then

(1) For some subsequence (a_{n_k}) ,

$$\lim_{k \to \infty} a_{n_k} = \limsup_{n \to \infty} a_n$$

(2) For some subsequence (a_{n_k}) ,

$$\lim_{k \to \infty} a_{n_k} = \liminf_{n \to \infty} a_n.$$

(3) If for some subsequence (a_{n_k}) ,

$$a = \lim_{k \to \infty} a_{n_k}$$

then

$$\liminf_{n \to \infty} a_n \le a \le \limsup_{n \to \infty} a_n.$$

Proof. To prove 1, let us construct recursively a sequence $n_1 < n_2 < \ldots n_k < \ldots$ such that (*) $a_{n_k} > s_{n_{k-1}+1} - 2^{-k}$.

Then, since $a_{n_k} \in R_{n_{k-1}+1}$, we have

$$a_{n_k} \le s_{n_{k-1}+1}.$$

Observe that

$$\lim_{k \to \infty} s_{n_{k-1}+1} = \lim_{k \to \infty} s_{n_{k-1}+1} - 2^{-k} = \lim_{n \to \infty} s_n = \limsup_{n \to \infty} a_n$$

Thus, by the Squeezed sequence lemma (applied to $s_{n_{k-1}+1}$ and $s_{n_{k-1}+1} - 2^{-k}$). To construct a subsequence with the property (*) let n_k be an index such that

To construct a subsequence with the property (*), let n_1 be an index such that

$$a_{n_1} > s_1 - 2^{-1}$$

Such an index exists since $s_1 = \sup R_1$.

If n_{k-1} is already constructed, let a_{n_k} be an element of $R_{n_{k-1}+1}$ with $a_{n_k} > s_{n_{k-1}+1} - 2^{-k}$. Again, it exists since $s_{n_{k-1}+1} = \sup R_{n_{k-1}+1}$. Also, $n_k \ge n_{k-1} + 1 > n_{k-1}$.

The proof of 2 is the same as the proof of 1.

To prove 3, let us observe that $m_{n_k} \leq a_{n_k} \leq s_{n_k}$, and both sequences (m_{n_k}) and (s_{n_k}) converge to $\liminf_{n\to\infty} a_n$ and $\limsup_{n\to\infty} a_n$ respectively, as subsequences of convergent sequences (m_n) and (s_n) . Thus

$$\liminf_{n \to \infty} a_n \le \lim_{k \to \infty} a_{n_k} \le \limsup_{n \to \infty} a_n.$$

Corollary (Bolzano-Weierstrass Theorem). Let (a_n) be a bounded sequence of real numbers. Then it has a convergent subsequence.

Proof. Take a subsequence converging to $\limsup_{n\to\infty} a_n$.

Corollary. Let (a_n) be a bounded sequence of real numbers and $a \in \mathbb{R}$. Assume that every convergent subsequence of (a_n) converges to a. Then (a_n) itself converges to a.

Proof. There is a subsequence of (a_n) convergent to $\limsup_{n\to\infty} a_n$. Thus $\limsup_{n\to\infty} a_n = a$. By the same reasoning, $\liminf_{n\to\infty} a_n = a$. Therefore,

 $\limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n = a,$

and thus

 $\lim_{n \to \infty} a_n = a.$